Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fixes (hopefully) #3841 #3866

Merged
merged 1 commit into from
Jun 18, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 17 additions & 5 deletions experimental/GModule/src/GaloisCohomology.jl
Original file line number Diff line number Diff line change
Expand Up @@ -196,6 +196,7 @@
M = abelian_group([0 for x = o])
h = MapFromFunc(c.C.M, M, x->M([valuation(x.data, y) for y = o]))
D = gmodule(G, [hom(M, M, [h(action(c.C, g, c.C.M(i//1))) for i = o]) for g = gens(c.C.G)])
# @assert all(is_bijective, D.ac)

cc = map_entries(h, c, parent = D)
h2, mh2, icb = Oscar.GrpCoh.H_two(D)
Expand All @@ -204,7 +205,6 @@
if i == 2
return false, nothing
else
@show :trying_harder
continue
end
end
Expand Down Expand Up @@ -234,7 +234,7 @@
return true, res
end

function Oscar.map_entries(MI:: Oscar.GrpCoh.MultGrp{AbsSimpleNumFieldOrderFractionalIdeal}, c::Oscar.GrpCoh.CoChain{2, <:GAPGroupElem, Oscar.GrpCoh.MultGrpElem{AbsSimpleNumFieldElem}})
function Oscar.map_entries(MI::Oscar.GrpCoh.MultGrp{AbsSimpleNumFieldOrderFractionalIdeal}, c::Oscar.GrpCoh.CoChain{2, <:GAPGroupElem, Oscar.GrpCoh.MultGrpElem{AbsSimpleNumFieldElem}})
k = c.C.M.data
zk = maximal_order(k)
D = gmodule(c.C.G, [MapFromFunc(MI, MI, x->MI(hom(k, k, action(c.C, g, c.C.M(gen(k))).data)(x.data))) for g = gens(c.C.G)])
Expand Down Expand Up @@ -428,7 +428,7 @@

#if K/k is unramified, then the units are cohomological trivial,
# so Z (with trivial action) is correct for the gmodule
#if K/k is tame, then the 1-units are cohomologycal trivial, hence
#if K/k is tame, then the 1-units are cohomological trivial, hence
# Z time k^* is enough...

e = divexact(absolute_ramification_index(K), absolute_ramification_index(k))
Expand Down Expand Up @@ -513,7 +513,18 @@


@vprint :GaloisCohomology 2 " .. quotient ..\n"
Q, mQ = quo(U, [preimage(mU, 1+prime(k)^4*x) for x = o])
if prime(k) == 2
#we need val(p^k) > 1/(p-1)
#val(p) = 1 and the only critical one is p=2, where k>1 is
#neccessary
ex = 2
else
ex = 1

Check warning on line 522 in experimental/GModule/src/GaloisCohomology.jl

View check run for this annotation

Codecov / codecov/patch

experimental/GModule/src/GaloisCohomology.jl#L522

Added line #L522 was not covered by tests
end
#x -> 1+pi*x is in general, not injective, not even for a basis
# if valuation(dm) == 0, then by Lorenz Alg II, 26.F10 it should
# be, but we're not using it. This was used to avoid exp
Q, mQ = quo(U, [preimage(mU, exp(prime(k)^ex*x)) for x = o])
S, mS = snf(Q)
Q = S
mQ = mQ*inv(mS)
Expand All @@ -525,7 +536,7 @@
end

@vprint :GaloisCohomology 2 " .. the module ..\n"
hh = [hom(Q, Q, [mQ(preimage(mU, mG(i)(mU(preimage(mQ, g))))) for g = gens(Q)]) for i=gens(G)]
hh = [hom(Q, Q, [mQ(preimage(mU, mG(i)(mU(preimage(mQ, g))))) for g = gens(Q)]; check = false) for i=gens(G)]
Hecke.assure_has_hnf(Q)
return gmodule(G, hh), mG, pseudo_inv(mQ)*mU
end
Expand Down Expand Up @@ -1287,6 +1298,7 @@
end

function local_index(CC::Vector{GrpCoh.CoChain{2, PermGroupElem, GrpCoh.MultGrpElem{AbsSimpleNumFieldElem}}}, P::AbsSimpleNumFieldOrderIdeal, mG::Map = automorphism_group(PermGroup, Hecke.nf(order(P)))[2]; B::Any = nothing, index_only::Bool = false)

k = Hecke.nf(order(P))

if B !== nothing && haskey(B.lp, P)
Expand Down
Loading