Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

perf: Improve hive partition pruning with datetime predicates from SQL #19680

Merged
merged 7 commits into from
Nov 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions crates/polars-expr/src/expressions/alias.rs
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,13 @@ impl PhysicalExpr for AliasExpr {
Ok(self.finish(series))
}

fn evaluate_inline_impl(&self, depth_limit: u8) -> Option<Column> {
let depth_limit = depth_limit.checked_sub(1)?;
self.physical_expr
.evaluate_inline_impl(depth_limit)
.map(|s| self.finish(s))
}

#[allow(clippy::ptr_arg)]
fn evaluate_on_groups<'a>(
&self,
Expand Down
63 changes: 34 additions & 29 deletions crates/polars-expr/src/expressions/apply.rs
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
use std::borrow::Cow;
use std::sync::OnceLock;

use polars_core::chunked_array::builder::get_list_builder;
use polars_core::prelude::*;
Expand Down Expand Up @@ -28,6 +29,7 @@ pub struct ApplyExpr {
check_lengths: bool,
allow_group_aware: bool,
output_field: Field,
inlined_eval: OnceLock<Option<Column>>,
}

impl ApplyExpr {
Expand Down Expand Up @@ -63,6 +65,7 @@ impl ApplyExpr {
check_lengths: options.check_lengths(),
allow_group_aware: options.flags.contains(FunctionFlags::ALLOW_GROUP_AWARE),
output_field,
inlined_eval: Default::default(),
}
}

Expand Down Expand Up @@ -347,6 +350,24 @@ impl PhysicalExpr for ApplyExpr {
}
}

fn evaluate_inline_impl(&self, depth_limit: u8) -> Option<Column> {
// For predicate evaluation at I/O of:
// `lit("2024-01-01").str.strptime()`

self.inlined_eval
.get_or_init(|| {
let depth_limit = depth_limit.checked_sub(1)?;
let mut inputs = self
.inputs
.iter()
.map(|x| x.evaluate_inline_impl(depth_limit).filter(|s| s.len() == 1))
.collect::<Option<Vec<_>>>()?;

self.eval_and_flatten(&mut inputs).ok()
})
.clone()
}

#[allow(clippy::ptr_arg)]
fn evaluate_on_groups<'a>(
&self,
Expand Down Expand Up @@ -576,11 +597,10 @@ impl ApplyExpr {
FunctionExpr::Boolean(BooleanFunction::IsIn) => {
let should_read = || -> Option<bool> {
let root = expr_to_leaf_column_name(&input[0]).ok()?;
let Expr::Literal(LiteralValue::Series(input)) = &input[1] else {
return None;
};
#[allow(clippy::explicit_auto_deref)]
let input: &Series = &**input;

let input = self.inputs[1].evaluate_inline()?;
let input = input.as_materialized_series();

let st = stats.get_stats(&root).ok()?;
let min = st.to_min()?;
let max = st.to_max()?;
Expand All @@ -603,35 +623,20 @@ impl ApplyExpr {
FunctionExpr::Boolean(BooleanFunction::IsBetween { closed }) => {
let should_read = || -> Option<bool> {
let root: PlSmallStr = expr_to_leaf_column_name(&input[0]).ok()?;
let Expr::Literal(left) = &input[1] else {
return None;
};
let Expr::Literal(right) = &input[2] else {
return None;
};

let left = self.inputs[1]
.evaluate_inline()?
.as_materialized_series()
.clone();
let right = self.inputs[2]
.evaluate_inline()?
.as_materialized_series()
.clone();

let st = stats.get_stats(&root).ok()?;
let min = st.to_min()?;
let max = st.to_max()?;

let (left, left_dtype) = (left.to_any_value()?, left.get_datatype());
let (right, right_dtype) = (right.to_any_value()?, right.get_datatype());

let left = Series::from_any_values_and_dtype(
PlSmallStr::EMPTY,
&[left],
&left_dtype,
false,
)
.ok()?;
let right = Series::from_any_values_and_dtype(
PlSmallStr::EMPTY,
&[right],
&right_dtype,
false,
)
.ok()?;

// don't read the row_group anyways as
// the condition will evaluate to false.
// e.g. in_between(10, 5)
Expand Down
38 changes: 22 additions & 16 deletions crates/polars-expr/src/expressions/binary.rs
Original file line number Diff line number Diff line change
Expand Up @@ -392,17 +392,26 @@ mod stats {
impl BinaryExpr {
fn impl_should_read(&self, stats: &BatchStats) -> PolarsResult<bool> {
// See: #5864 for the rationale behind this.
use Expr::*;
use Operator::*;
if !self.expr.into_iter().all(|e| match e {
BinaryExpr { op, .. } => {
!matches!(op, Multiply | Divide | TrueDivide | FloorDivide | Modulus)
},
Column(_) | Literal(_) | Alias(_, _) => true,
_ => false,
}) {
return Ok(true);
{
use Operator::*;

match self.op {
// These don't result in a boolean output
Multiply | Divide | TrueDivide | FloorDivide | Modulus => return Ok(true),
_ => {},
}

let Expr::BinaryExpr { left, right, .. } = &self.expr else {
unreachable!()
};

match (left.as_ref(), right.as_ref()) {
// The logic below assumes one side is a column
(Expr::Column(_), _) | (_, Expr::Column(_)) => {},
_ => return Ok(true),
}
}

let schema = stats.schema();
let Some(fld_l) = self.left.to_field(schema).ok() else {
return Ok(true);
Expand All @@ -423,18 +432,16 @@ mod stats {
}
}

let dummy = DataFrame::empty();
let state = ExecutionState::new();

let out = match (self.left.is_literal(), self.right.is_literal()) {
(false, true) => {
let out = match (self.left.evaluate_inline(), self.right.evaluate_inline()) {
(None, Some(lit_s)) => {
let l = stats.get_stats(fld_l.name())?;
match l.to_min_max() {
None => Ok(true),
Some(min_max_s) => {
// will be incorrect if not
debug_assert_eq!(min_max_s.null_count(), 0);
let lit_s = self.right.evaluate(&dummy, &state).unwrap();
Ok(apply_operator_stats_rhs_lit(
&min_max_s.into_column(),
&lit_s,
Expand All @@ -443,14 +450,13 @@ mod stats {
},
}
},
(true, false) => {
(Some(lit_s), None) => {
let r = stats.get_stats(fld_r.name())?;
match r.to_min_max() {
None => Ok(true),
Some(min_max_s) => {
// will be incorrect if not
debug_assert_eq!(min_max_s.null_count(), 0);
let lit_s = self.left.evaluate(&dummy, &state).unwrap();
Ok(apply_operator_stats_lhs_lit(
&lit_s,
&min_max_s.into_column(),
Expand Down
15 changes: 15 additions & 0 deletions crates/polars-expr/src/expressions/cast.rs
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
use std::sync::OnceLock;

use polars_core::chunked_array::cast::CastOptions;
use polars_core::prelude::*;

Expand All @@ -9,6 +11,7 @@ pub struct CastExpr {
pub(crate) dtype: DataType,
pub(crate) expr: Expr,
pub(crate) options: CastOptions,
pub(crate) inlined_eval: OnceLock<Option<Column>>,
}

impl CastExpr {
Expand All @@ -27,6 +30,18 @@ impl PhysicalExpr for CastExpr {
self.finish(&column)
}

fn evaluate_inline_impl(&self, depth_limit: u8) -> Option<Column> {
self.inlined_eval
.get_or_init(|| {
let depth_limit = depth_limit.checked_sub(1)?;
self.input
.evaluate_inline_impl(depth_limit)
.filter(|x| x.len() == 1)
.and_then(|x| self.finish(&x).ok())
})
.clone()
}

#[allow(clippy::ptr_arg)]
fn evaluate_on_groups<'a>(
&self,
Expand Down
24 changes: 18 additions & 6 deletions crates/polars-expr/src/expressions/literal.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,8 @@ impl LiteralExpr {
pub fn new(value: LiteralValue, expr: Expr) -> Self {
Self(value, expr)
}
}

impl PhysicalExpr for LiteralExpr {
fn as_expression(&self) -> Option<&Expr> {
Some(&self.1)
}
fn evaluate(&self, _df: &DataFrame, _state: &ExecutionState) -> PolarsResult<Column> {
fn as_column(&self) -> PolarsResult<Column> {
use LiteralValue::*;
let s = match &self.0 {
#[cfg(feature = "dtype-i8")]
Expand Down Expand Up @@ -118,6 +113,23 @@ impl PhysicalExpr for LiteralExpr {
};
Ok(s)
}
}

impl PhysicalExpr for LiteralExpr {
fn as_expression(&self) -> Option<&Expr> {
Some(&self.1)
}
fn evaluate(&self, _df: &DataFrame, _state: &ExecutionState) -> PolarsResult<Column> {
self.as_column()
}

fn evaluate_inline_impl(&self, _depth_limit: u8) -> Option<Column> {
use LiteralValue::*;
match &self.0 {
Range { .. } => None,
_ => self.as_column().ok(),
}
}

#[allow(clippy::ptr_arg)]
fn evaluate_on_groups<'a>(
Expand Down
14 changes: 14 additions & 0 deletions crates/polars-expr/src/expressions/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -538,6 +538,20 @@ pub trait PhysicalExpr: Send + Sync {
/// Take a DataFrame and evaluate the expression.
fn evaluate(&self, df: &DataFrame, _state: &ExecutionState) -> PolarsResult<Column>;

/// Attempt to cheaply evaluate this expression in-line without a DataFrame context.
/// This is used by StatsEvaluator when skipping files / row groups using a predicate.
/// TODO: Maybe in the future we can do this evaluation in-line at the optimizer stage?
///
/// Do not implement this directly - instead implement `evaluate_inline_impl`
fn evaluate_inline(&self) -> Option<Column> {
ritchie46 marked this conversation as resolved.
Show resolved Hide resolved
self.evaluate_inline_impl(4)
}

/// Implementation of `evaluate_inline`
fn evaluate_inline_impl(&self, _depth_limit: u8) -> Option<Column> {
None
}

/// Some expression that are not aggregations can be done per group
/// Think of sort, slice, filter, shift, etc.
/// defaults to ignoring the group
Expand Down
1 change: 1 addition & 0 deletions crates/polars-expr/src/planner.rs
Original file line number Diff line number Diff line change
Expand Up @@ -438,6 +438,7 @@ fn create_physical_expr_inner(
dtype: dtype.clone(),
expr: node_to_expr(expression, expr_arena),
options: *options,
inlined_eval: Default::default(),
}))
},
Ternary {
Expand Down
2 changes: 2 additions & 0 deletions crates/polars-io/src/predicates.rs
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,7 @@ impl ColumnStats {
///
/// Returns `None` if no maximum value is available.
pub fn to_min(&self) -> Option<&Series> {
// @scalar-opt
let min_val = self.min_value.as_ref()?;
let dtype = min_val.dtype();

Expand All @@ -177,6 +178,7 @@ impl ColumnStats {
///
/// Returns `None` if no maximum value is available.
pub fn to_max(&self) -> Option<&Series> {
// @scalar-opt
let max_val = self.max_value.as_ref()?;
let dtype = max_val.dtype();

Expand Down
72 changes: 72 additions & 0 deletions py-polars/tests/unit/io/test_scan.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

import io
from dataclasses import dataclass
from datetime import datetime
from functools import partial
from math import ceil
from pathlib import Path
Expand Down Expand Up @@ -835,3 +836,74 @@ def test_streaming_scan_csv_with_row_index_19172(io_files_path: Path) -> None:
schema={"calories": pl.String, "index": pl.UInt32},
),
)


@pytest.mark.write_disk
def test_predicate_hive_pruning_with_cast(tmp_path: Path) -> None:
tmp_path.mkdir(exist_ok=True)

df = pl.DataFrame({"x": 1})

(p := (tmp_path / "date=2024-01-01")).mkdir()

df.write_parquet(p / "1")

(p := (tmp_path / "date=2024-01-02")).mkdir()

# Write an invalid parquet file that will cause errors if polars attempts to
# read it.
# This works because `scan_parquet()` only looks at the first file during
# schema inference.
(p / "1").write_text("not a parquet file")

expect = pl.DataFrame({"x": 1, "date": datetime(2024, 1, 1).date()})

lf = pl.scan_parquet(tmp_path)

q = lf.filter(pl.col("date") < datetime(2024, 1, 2).date())

assert_frame_equal(q.collect(), expect)

# This filter expr with stprtime is effectively what LazyFrame.sql()
# generates
q = lf.filter(
pl.col("date")
< pl.lit("2024-01-02").str.strptime(
dtype=pl.Date, format="%Y-%m-%d", ambiguous="latest"
)
)

assert_frame_equal(q.collect(), expect)

q = lf.sql("select * from self where date < '2024-01-02'")
assert_frame_equal(q.collect(), expect)


def test_predicate_stats_eval_nested_binary() -> None:
bufs: list[bytes] = []

for i in range(10):
b = io.BytesIO()
pl.DataFrame({"x": i}).write_parquet(b)
b.seek(0)
bufs.append(b.read())

assert_frame_equal(
(
pl.scan_parquet(bufs)
.filter(pl.col("x") % 2 == 0)
.collect(no_optimization=True)
),
pl.DataFrame({"x": [0, 2, 4, 6, 8]}),
)

assert_frame_equal(
(
pl.scan_parquet(bufs)
# The literal eval depth limit is 4 -
# * crates/polars-expr/src/expressions/mod.rs::PhysicalExpr::evaluate_inline
.filter(pl.col("x") == pl.lit("222").str.slice(0, 1).cast(pl.Int64))
.collect()
),
pl.DataFrame({"x": [2]}),
)