Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introduce some simple benchmarks for rolling window aggregations #17613

Merged
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions cpp/benchmarks/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -425,6 +425,11 @@ ConfigureNVBench(DECIMAL_NVBENCH decimal/convert_floating.cpp)
# ---------------------------------------------------------------------------------
ConfigureNVBench(RESHAPE_NVBENCH reshape/interleave.cpp)

# ##################################################################################################
# * rolling benchmark
# ---------------------------------------------------------------------------------
ConfigureNVBench(ROLLING_NVBENCH rolling/grouped_rolling_sum.cpp rolling/rolling_sum.cpp)

add_custom_target(
run_benchmarks
DEPENDS CUDF_BENCHMARKS
Expand Down
72 changes: 72 additions & 0 deletions cpp/benchmarks/rolling/grouped_rolling_sum.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
/*
* Copyright (c) 2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <benchmarks/common/generate_input.hpp>
#include <benchmarks/fixture/benchmark_fixture.hpp>

#include <cudf/aggregation.hpp>
#include <cudf/copying.hpp>
wence- marked this conversation as resolved.
Show resolved Hide resolved
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/rolling.hpp>
#include <cudf/sorting.hpp>
#include <cudf/utilities/default_stream.hpp>

#include <nvbench/nvbench.cuh>

template <typename Type>
void bench_row_grouped_rolling_sum(nvbench::state& state, nvbench::type_list<Type>)
wence- marked this conversation as resolved.
Show resolved Hide resolved
{
auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows"));
auto const cardinality = static_cast<cudf::size_type>(state.get_int64("cardinality"));
auto const preceding_size = static_cast<cudf::size_type>(state.get_int64("preceding_size"));
auto const following_size = static_cast<cudf::size_type>(state.get_int64("following_size"));
auto const min_periods = static_cast<cudf::size_type>(state.get_int64("min_periods"));

auto const keys = [&] {
data_profile const profile =
data_profile_builder()
.cardinality(cardinality)
.no_validity()
.distribution(cudf::type_to_id<int32_t>(), distribution_id::UNIFORM, 0, num_rows);
auto keys = create_random_column(cudf::type_to_id<int32_t>(), row_count{num_rows}, profile);
return cudf::sort(cudf::table_view{{keys->view()}});
}();
data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution(
cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100);
auto vals = create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile);

auto req = cudf::make_sum_aggregation<cudf::rolling_aggregation>();

auto const mem_stats_logger = cudf::memory_stats_logger();
state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value()));
state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) {
auto const result = cudf::grouped_rolling_window(
keys->view(), vals->view(), preceding_size, following_size, min_periods, *req);
});
auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value");
state.add_element_count(static_cast<double>(num_rows) / elapsed_time / 1'000'000., "Mrows/s");
state.add_buffer_size(
mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage");
}

NVBENCH_BENCH_TYPES(bench_row_grouped_rolling_sum,
NVBENCH_TYPE_AXES(nvbench::type_list<std::int32_t, double>))
.set_name("row_grouped_rolling_sum")
.add_int64_power_of_two_axis("num_rows", {14, 28})
.add_int64_axis("preceding_size", {1, 10})
.add_int64_axis("following_size", {2})
.add_int64_axis("min_periods", {1})
.add_int64_axis("cardinality", {10, 100, 1'000'000, 100'000'000});
136 changes: 136 additions & 0 deletions cpp/benchmarks/rolling/rolling_sum.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
/*
* Copyright (c) 2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <benchmarks/common/generate_input.hpp>
#include <benchmarks/fixture/benchmark_fixture.hpp>

#include <cudf/aggregation.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/aggregation/aggregation.hpp>
#include <cudf/rolling.hpp>
#include <cudf/sorting.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/default_stream.hpp>

#include <rmm/device_buffer.hpp>
#include <rmm/device_uvector.hpp>
#include <rmm/exec_policy.hpp>

#include <thrust/iterator/counting_iterator.h>

#include <nvbench/nvbench.cuh>

#include <algorithm>

template <typename Type>
void bench_row_fixed_rolling_sum(nvbench::state& state, nvbench::type_list<Type>)
{
auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows"));
auto const preceding_size = static_cast<cudf::size_type>(state.get_int64("preceding_size"));
auto const following_size = static_cast<cudf::size_type>(state.get_int64("following_size"));
auto const min_periods = static_cast<cudf::size_type>(state.get_int64("min_periods"));

data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution(
cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100);
auto vals = create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile);

auto req = cudf::make_sum_aggregation<cudf::rolling_aggregation>();

auto const mem_stats_logger = cudf::memory_stats_logger();
state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value()));
state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) {
auto const result =
cudf::rolling_window(vals->view(), preceding_size, following_size, min_periods, *req);
});
auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value");
state.add_element_count(static_cast<double>(num_rows) / elapsed_time / 1'000'000., "Mrows/s");
state.add_buffer_size(
mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage");
}

template <typename Type>
void bench_row_variable_rolling_sum(nvbench::state& state, nvbench::type_list<Type>)
{
auto const num_rows = static_cast<cudf::size_type>(state.get_int64("num_rows"));
auto const preceding_size = static_cast<cudf::size_type>(state.get_int64("preceding_size"));
auto const following_size = static_cast<cudf::size_type>(state.get_int64("following_size"));

auto vals = [&]() {
data_profile const profile = data_profile_builder().cardinality(0).no_validity().distribution(
cudf::type_to_id<Type>(), distribution_id::UNIFORM, 0, 100);
return create_random_column(cudf::type_to_id<Type>(), row_count{num_rows}, profile);
}();

auto preceding = [&]() {
auto data = std::vector<cudf::size_type>(num_rows);
auto it = thrust::make_counting_iterator<cudf::size_type>(0);
std::transform(it, it + num_rows, data.begin(), [num_rows, preceding_size](auto i) {
return std::min(i + 1, std::max(preceding_size, i + 1 - num_rows));
});
auto buf = rmm::device_buffer(
data.data(), num_rows * sizeof(cudf::size_type), cudf::get_default_stream());
cudf::get_default_stream().synchronize();
return std::make_unique<cudf::column>(cudf::data_type(cudf::type_to_id<cudf::size_type>()),
num_rows,
std::move(buf),
rmm::device_buffer{},
0);
}();

auto following = [&]() {
auto data = std::vector<cudf::size_type>(num_rows);
auto it = thrust::make_counting_iterator<cudf::size_type>(0);
std::transform(it, it + num_rows, data.begin(), [num_rows, following_size](auto i) {
return std::max(-i - 1, std::min(following_size, num_rows - i - 1));
});
auto buf = rmm::device_buffer(
data.data(), num_rows * sizeof(cudf::size_type), cudf::get_default_stream());
cudf::get_default_stream().synchronize();
return std::make_unique<cudf::column>(cudf::data_type(cudf::type_to_id<cudf::size_type>()),
num_rows,
std::move(buf),
rmm::device_buffer{},
0);
}();

auto req = cudf::make_sum_aggregation<cudf::rolling_aggregation>();

auto const mem_stats_logger = cudf::memory_stats_logger();
state.set_cuda_stream(nvbench::make_cuda_stream_view(cudf::get_default_stream().value()));
state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) {
auto const result =
cudf::rolling_window(vals->view(), preceding->view(), following->view(), 1, *req);
});
auto const elapsed_time = state.get_summary("nv/cold/time/gpu/mean").get_float64("value");
state.add_element_count(static_cast<double>(num_rows) / elapsed_time / 1'000'000., "Mrows/s");
state.add_buffer_size(
mem_stats_logger.peak_memory_usage(), "peak_memory_usage", "peak_memory_usage");
}

NVBENCH_BENCH_TYPES(bench_row_fixed_rolling_sum,
NVBENCH_TYPE_AXES(nvbench::type_list<std::int32_t, double>))
.set_name("row_fixed_rolling_sum")
.add_int64_power_of_two_axis("num_rows", {14, 22, 28})
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: Is there any reason for choice of these numbers of num_rows? or just random.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Smallish, mediumish, and largeish. But other than that, not particularly attached to them.

.add_int64_axis("preceding_size", {1, 10, 100})
.add_int64_axis("following_size", {2})
.add_int64_axis("min_periods", {1, 20});

NVBENCH_BENCH_TYPES(bench_row_variable_rolling_sum,
NVBENCH_TYPE_AXES(nvbench::type_list<std::int32_t, double>))
.set_name("row_variable_rolling_sum")
.add_int64_power_of_two_axis("num_rows", {14, 22, 28})
.add_int64_axis("preceding_size", {10, 100})
.add_int64_axis("following_size", {2});
Loading