-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
184 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
"""Ref: On Algorithms for planning S-curve Motion Profiles, Kim Doang Nguyen, Teck-Chew Ng, I-Ming Chen, 2008. | ||
""" | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from typing import List | ||
|
||
def pos_real_root(x): | ||
rs = np.roots(x) | ||
for r in rs: | ||
if r.imag==0 and r>=0: | ||
return r.real | ||
|
||
class MotionProfile2: | ||
"""Trapezoid trajectory, limit acceleration | ||
""" | ||
def __init__(self, x_peak: np.ndarray): | ||
self.order = 2 | ||
|
||
assert len(x_peak) == 3, f"{x_peak} is not valid [position, velocity, acceleration]" | ||
T = np.zeros(self.order+1) | ||
T[2] = pos_real_root([x_peak[2], T[1]*x_peak[2], -x_peak[0]]) | ||
x_max = T[2]*x_peak[2] | ||
if T[2]*x_peak[2] > x_peak[1]: | ||
T[2] = pos_real_root([x_peak[2], -x_peak[1]]) | ||
else: | ||
x_peak[1] = x_max | ||
T[1] = pos_real_root([T[2]*x_peak[2], T[2]**2*x_peak[2]-x_peak[0]]) | ||
self.T = T | ||
self.x_peak = x_peak | ||
|
||
def get_T(self): return self.T[1] + 2*self.T[2] | ||
def get_pva(self, t: float) -> np.ndarray: | ||
"""Given | ||
Args: | ||
t (float): _description_ | ||
Returns: | ||
np.ndarray: [p,v,a] | ||
""" | ||
p = 0 | ||
v = 0 | ||
a = 0 | ||
if self.T[0] <= t <= self.T[2]: | ||
p = (t-(self.T[0]))**2*self.x_peak[2]/2 | ||
v = (t-(self.T[0]))*self.x_peak[2] | ||
a = self.x_peak[2] | ||
elif self.T[2] <= t <= self.T[1] + self.T[2]: | ||
p = (t-(self.T[2]))*self.x_peak[1] + self.T[2]**2*self.x_peak[2]/2 | ||
v = self.x_peak[1] | ||
a = 0 | ||
elif self.T[1] + self.T[2] <= t <= self.T[1] + 2*self.T[2]: | ||
p = -(t-(self.T[1]+self.T[2]))**2*self.x_peak[2]/2 + (t-(self.T[1]+self.T[2]))*self.T[2]*self.x_peak[2]+self.T[1]*self.x_peak[1]+self.T[2]**2*self.x_peak[2]/2 | ||
v = -(t-(self.T[1]+self.T[2]))*self.x_peak[2] + self.T[2]*self.x_peak[2] | ||
a = -self.x_peak[2] | ||
else: | ||
p = self.x_peak[0] | ||
v = 0 | ||
a = 0 | ||
return np.array([p,v,a]) | ||
|
||
|
||
class MotionProfile3: | ||
"""S-curve trajectory, limit jerk | ||
""" | ||
def __init__(self, x_peak) -> None: | ||
self.order = 3 | ||
|
||
assert len(x_peak) == 4, f"{x_peak} is not valid [position, velocity, acceleration, jerk]" | ||
T = np.zeros(self.order+1) | ||
T[3] = pos_real_root([2*x_peak[3], T[1]*x_peak[3]+3*T[2]*x_peak[3], T[1]*T[2]*x_peak[3] + T[2]**2*x_peak[3], -x_peak[0]]) | ||
|
||
x_max = (2*T[2] + 2*T[3])*T[3]*x_peak[3]/2 | ||
if x_max > x_peak[1]: | ||
T[3] = pos_real_root([x_peak[3], T[2]*x_peak[3], -x_peak[1]]) | ||
else: | ||
x_peak[1] = x_max | ||
|
||
x_max = T[3]*x_peak[3] | ||
if x_max > x_peak[2]: | ||
T[3] = pos_real_root([x_peak[3], -x_peak[2]]) | ||
else: | ||
x_peak[2] = x_max | ||
|
||
T[2] = pos_real_root([T[3]*x_peak[3], T[1]*T[3]*x_peak[3] + 3*T[3]**2*x_peak[3], T[1]*T[3]**2*x_peak[3] + 2*T[3]**3*x_peak[3] - x_peak[0]]) | ||
x_max = (2*T[2] + 2*T[3])*T[3]*x_peak[3]/2 | ||
if (x_max > x_peak[1]): | ||
T[2] = pos_real_root([T[3]*x_peak[3], T[3]**2*x_peak[3] - x_peak[1]]) | ||
else: | ||
x_peak[1] = x_max | ||
|
||
T[1] = pos_real_root([T[2]*T[3]*x_peak[3] + T[3]**2*x_peak[3], T[2]**2*T[3]*x_peak[3] + 3*T[2]*T[3]**2*x_peak[3] + 2*T[3]**3*x_peak[3] - x_peak[0]]) | ||
self.T = T | ||
self.x_peak = x_peak | ||
|
||
def get_T(self): return self.T[1] + 2*self.T[2] + 4*self.T[3] | ||
|
||
def get_pva(self, t: float) -> np.ndarray: | ||
p = 0 | ||
v = 0 | ||
a = 0 | ||
if self.T[0] <= t <= self.T[3]: | ||
p = (t-self.T[0])**3*self.x_peak[3]/6 | ||
v = (t-self.T[0])**2*self.x_peak[3]/2 | ||
a = (t-self.T[0])*self.x_peak[3] | ||
elif self.T[3] <= t <= self.T[2] + self.T[3]: | ||
p = (t-self.T[3])**2*self.x_peak[2]/2 + (t-self.T[3])*self.T[3]**2*self.x_peak[3]/2 + self.T[3]**3*self.x_peak[3]/6 | ||
v = (t-self.T[3])*self.x_peak[2] + self.T[3]**2*self.x_peak[3]/2 | ||
a = self.x_peak[2] | ||
elif self.T[2] + self.T[3] <= t <= self.T[2] + 2*self.T[3]: | ||
p = -(t-(self.T[2] + self.T[3]))**3*self.x_peak[3]/6 + (t-(self.T[2] + self.T[3]))**2*self.T[3]*self.x_peak[3]/2 + (t-(self.T[2] + self.T[3]))*(self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3]/2) + self.T[2]**2*self.x_peak[2]/2 + self.T[2]*self.T[3]**2*self.x_peak[3]/2 + self.T[3]**3*self.x_peak[3]/6 | ||
v = -(t-(self.T[2] + self.T[3]))**2*self.x_peak[3]/2 + (t-(self.T[2] + self.T[3]))*self.T[3]*self.x_peak[3] + (self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3]/2) | ||
a = -(t-(self.T[2] + self.T[3]))*self.x_peak[3] + self.T[3]*self.x_peak[3] | ||
elif self.T[2] + 2*self.T[3] <= t <= self.T[1] + self.T[2] + 2*self.T[3]: | ||
p = (t-(self.T[2] + 2*self.T[3]))*self.x_peak[1] + (self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3]/2)*self.T[3] + self.T[2]**2*self.x_peak[2]/2 + self.T[2]*self.T[3]**2*self.x_peak[3]/2 + self.T[3]**3*self.x_peak[3]/2 | ||
v = self.x_peak[1] | ||
a = 0 | ||
elif self.T[1] + self.T[2] + 2*self.T[3] <= t <= self.T[1] + self.T[2] + 3*self.T[3]: | ||
p = -(t-(self.T[1] + self.T[2] + 2*self.T[3]))**3*self.x_peak[3]/6 + (t-(self.T[1] + self.T[2] + 2*self.T[3]))*(self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3]) + (self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3]/2)*self.T[3] + self.T[1]*self.x_peak[1] + self.T[2]**2*self.x_peak[2]/2 + self.T[2]*self.T[3]**2*self.x_peak[3]/2 + self.T[3]**3*self.x_peak[3]/2 | ||
v = -(t-(self.T[1] + self.T[2] + 2*self.T[3]))**2*self.x_peak[3]/2 + (self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3]) | ||
a = -(t-(self.T[1] + self.T[2] + 2*self.T[3]))*self.x_peak[3] | ||
elif self.T[1] + self.T[2] + 3*self.T[3] <= t <= self.T[1] + 2*self.T[2] + 3*self.T[3]: | ||
p = -(t-(self.T[1] + self.T[2] + 3*self.T[3]))**2*self.x_peak[2]/2 + (t-(self.T[1] + self.T[2] + 3*self.T[3]))*(self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3]/2) + (self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3]/2)*self.T[3] + (self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3])*self.T[3] + self.T[1]*self.x_peak[1] + self.T[2]**2*self.x_peak[2]/2 + self.T[2]*self.T[3]**2*self.x_peak[3]/2 + self.T[3]**3*self.x_peak[3]/3 | ||
v = -(t-(self.T[1] + self.T[2] + 3*self.T[3]))*self.x_peak[2] + (self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3]/2) | ||
a = -self.x_peak[2] | ||
elif self.T[1] + 2*self.T[2] + 3*self.T[3] <= t <= self.T[1] + 2*self.T[2] + 4*self.T[3]: | ||
p = (t-(self.T[1] + 2*self.T[2] + 3*self.T[3]))**3*self.x_peak[3]/6 - (t-(self.T[1] + 2*self.T[2] + 3*self.T[3]))**2*self.T[3]*self.x_peak[3]/2 + (t-(self.T[1] + 2*self.T[2] + 3*self.T[3]))*self.T[3]**2*self.x_peak[3]/2 + (self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3]/2)*self.T[2] + (self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3]/2)*self.T[3] + (self.T[2]*self.x_peak[2] + self.T[3]**2*self.x_peak[3])*self.T[3] + self.T[1]*self.x_peak[1] + self.T[2]*self.T[3]**2*self.x_peak[3]/2 + self.T[3]**3*self.x_peak[3]/3 | ||
v = (t-(self.T[1] + 2*self.T[2] + 3*self.T[3]))**2*self.x_peak[3]/2 - (t-(self.T[1] + 2*self.T[2] + 3*self.T[3]))*self.T[3]*self.x_peak[3] + self.T[3]**2*self.x_peak[3]/2 | ||
a = (t-(self.T[1] + 2*self.T[2] + 3*self.T[3]))*self.x_peak[3] - self.T[3]*self.x_peak[3] | ||
else: | ||
p = self.x_peak[0] | ||
v = 0 | ||
a = 0 | ||
return np.array([p,v,a]) | ||
|
||
|
||
def main(): | ||
plt.subplot(1,2,1) | ||
traj2 = MotionProfile2([7.0, 3.0, 3.0]) | ||
pos = [] | ||
vel = [] | ||
acc = [] | ||
ts = np.linspace(0, traj2.get_T(), int(traj2.get_T()//0.01)) | ||
for t in ts: | ||
pva = traj2.get_pva(t) | ||
pos.append(pva[0]) | ||
vel.append(pva[1]) | ||
acc.append(pva[2]) | ||
plt.plot(ts, pos, label="position") | ||
plt.plot(ts, vel, label="velocity") | ||
plt.plot(ts, acc, label="acceleration") | ||
plt.legend() | ||
plt.title("Trapezoid Motion Profile") | ||
|
||
|
||
plt.subplot(1,2,2) | ||
traj3 = MotionProfile3([7.0, 3.0, 3.0, 10.0]) | ||
pos = [] | ||
vel = [] | ||
acc = [] | ||
ts = np.linspace(0, traj3.get_T(), int(traj3.get_T()//0.01)) | ||
for t in ts: | ||
pva = traj3.get_pva(t) | ||
pos.append(pva[0]) | ||
vel.append(pva[1]) | ||
acc.append(pva[2]) | ||
plt.plot(ts, pos, label="position") | ||
plt.plot(ts, vel, label="velocity") | ||
plt.plot(ts, acc, label="acceleration") | ||
plt.legend() | ||
plt.title("S-Curve Motion Profile") | ||
plt.show() | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters