Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Kernel] Update fused_moe tuning script for FP8 #4457

Merged
merged 13 commits into from
May 1, 2024
Merged
Show file tree
Hide file tree
Changes from 12 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
109 changes: 71 additions & 38 deletions benchmarks/kernels/benchmark_mixtral_moe.py
Original file line number Diff line number Diff line change
@@ -1,27 +1,29 @@
import argparse
import json
import os
import sys

import torch
import torch.nn.functional as F
import triton
from tqdm import tqdm

from vllm.model_executor.layers.fused_moe import (fused_moe,
get_config_file_name)

os.environ['CUDA_VISIBLE_DEVICES'] = '0'


def main():
def main(dtype: str):
method = fused_moe
for bs in [
1, 2, 4, 8, 16, 24, 32, 48, 64, 96, 128, 256, 512, 1024, 1536,
2048, 3072, 4096
]:
run_grid(bs, method=method)
run_grid(bs, method=method, dtype=dtype)


def run_grid(bs, method):
def run_grid(bs, method, dtype: str):
d_model = 4096
num_total_experts = 8
top_k = 2
Expand All @@ -34,39 +36,29 @@ def run_grid(bs, method):
num_trials = 1

configs = []
if bs <= 16:
BLOCK_SIZES_M = [16]
elif bs <= 32:
BLOCK_SIZES_M = [16, 32]
elif bs <= 64:
BLOCK_SIZES_M = [16, 32, 64]
elif bs <= 128:
BLOCK_SIZES_M = [16, 32, 64, 128]
else:
BLOCK_SIZES_M = [16, 32, 64, 128, 256]

for block_size_n in [32, 64, 128, 256]:
for block_size_m in BLOCK_SIZES_M:
for block_size_m in [16, 32, 64, 128, 256]:
for block_size_k in [64, 128, 256]:
for group_size_m in [1, 16, 32, 64]:
for num_warps in [4, 8]:
configs.append({
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
"num_warps": num_warps,
"num_stages": 4,
})
for num_stages in [4, 5]:
configs.append({
"BLOCK_SIZE_M": block_size_m,
"BLOCK_SIZE_N": block_size_n,
"BLOCK_SIZE_K": block_size_k,
"GROUP_SIZE_M": group_size_m,
"num_warps": num_warps,
"num_stages": num_stages,
})

best_config = None
best_time_us = 1e20

for config in configs:
print(f'{tp_size=} {bs=}')
print(f'{config}')
print(f'{tp_size=} {bs=}')

for config in tqdm(configs):
# warmup
print('warming up')
try:
for _ in range(num_warmup_trials):
run_timing(
Expand All @@ -79,12 +71,12 @@ def run_grid(bs, method):
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
dtype=dtype,
)
except triton.runtime.autotuner.OutOfResources:
continue

# trial
print('benchmarking')
for _ in range(num_trials):
kernel_dur_ms = run_timing(
num_calls=num_calls,
Expand All @@ -96,6 +88,7 @@ def run_grid(bs, method):
model_intermediate_size=model_intermediate_size,
method=method,
config=config,
dtype=dtype,
)

kernel_dur_us = 1000 * kernel_dur_ms
Expand All @@ -105,16 +98,18 @@ def run_grid(bs, method):
best_config = config
best_time_us = kernel_dur_us

print(f'{kernel_dur_us=:.1f} {model_dur_ms=:.1f}'
f' {bs=} {tp_size=} {top_k=} {num_total_experts=} '
f'{d_model=} {model_intermediate_size=} {num_layers=}')
tqdm.write(
f'{kernel_dur_us=:.1f} {model_dur_ms=:.1f}'
f' {bs=} {tp_size=} {top_k=} {num_total_experts=} '
f'{d_model=} {model_intermediate_size=} {num_layers=}')

print("best_time_us", best_time_us)
print("best_config", best_config)

# holds Dict[str, Dict[str, int]]
filename = get_config_file_name(num_total_experts,
model_intermediate_size // tp_size)
model_intermediate_size // tp_size,
"float8" if dtype == "float8" else None)
print(f"writing config to file {filename}")
existing_content = {}
if os.path.exists(filename):
Expand All @@ -128,27 +123,48 @@ def run_grid(bs, method):

def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
top_k: int, tp_size: int, model_intermediate_size: int, method,
config) -> float:
config, dtype: str) -> float:
shard_intermediate_size = model_intermediate_size // tp_size

hidden_states = torch.rand(
(bs, d_model),
device="cuda:0",
dtype=torch.bfloat16,
dtype=torch.float16,
)

ws = torch.rand(
w1 = torch.rand(
(num_total_experts, 2 * shard_intermediate_size, d_model),
device=hidden_states.device,
dtype=hidden_states.dtype,
)

w2s = torch.rand(
w2 = torch.rand(
(num_total_experts, d_model, shard_intermediate_size),
device=hidden_states.device,
dtype=hidden_states.dtype,
)

w1_scale = None
w2_scale = None
a1_scale = None
a2_scale = None

if dtype == "float8":
w1 = w1.to(torch.float8_e4m3fn)
w2 = w2.to(torch.float8_e4m3fn)
w1_scale = torch.ones(num_total_experts,
device=hidden_states.device,
dtype=torch.float32)
w2_scale = torch.ones(num_total_experts,
device=hidden_states.device,
dtype=torch.float32)
a1_scale = torch.ones(1,
device=hidden_states.device,
dtype=torch.float32)
a2_scale = torch.ones(1,
device=hidden_states.device,
dtype=torch.float32)

gating_output = F.softmax(torch.rand(
(num_calls, bs, num_total_experts),
device=hidden_states.device,
Expand All @@ -163,13 +179,18 @@ def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,
for i in range(num_calls):
hidden_states = method(
hidden_states=hidden_states,
w1=ws,
w2=w2s,
w1=w1,
w2=w2,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
gating_output=gating_output[i],
topk=2,
renormalize=True,
inplace=True,
override_config=config,
use_fp8=dtype == "float8",
)
end_event.record()
end_event.synchronize()
Expand All @@ -179,4 +200,16 @@ def run_timing(num_calls: int, bs: int, d_model: int, num_total_experts: int,


if __name__ == "__main__":
sys.exit(main())
parser = argparse.ArgumentParser(
prog='benchmark_mixtral_moe',
description='Benchmark and tune the fused_moe kernel',
)
parser.add_argument(
'--dtype',
type=str,
default='auto',
choices=['float8', 'float16'],
help='Data type used for fused_moe kernel computations',
)
args = parser.parse_args()
sys.exit(main(args.dtype))
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
{
"1": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 5
},
"2": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 5
},
"4": {
"BLOCK_SIZE_M": 16,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 256,
"GROUP_SIZE_M": 64,
"num_warps": 8,
"num_stages": 4
},
"8": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 1,
"num_warps": 4,
"num_stages": 5
},
"16": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 256,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 5
},
"24": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 8,
"num_stages": 4
},
"32": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 16,
"num_warps": 4,
"num_stages": 5
},
"48": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 32,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 32,
"num_warps": 8,
"num_stages": 5
},
"64": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 64,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 4,
"num_stages": 4
},
"96": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 16,
"num_warps": 8,
"num_stages": 4
},
"128": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 4
},
"256": {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 32,
"num_warps": 8,
"num_stages": 5
},
"512": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 128,
"BLOCK_SIZE_K": 64,
"GROUP_SIZE_M": 64,
"num_warps": 8,
"num_stages": 4
},
"1024": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 64,
"num_warps": 8,
"num_stages": 4
},
"1536": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 32,
"num_warps": 8,
"num_stages": 4
},
"2048": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 64,
"num_warps": 8,
"num_stages": 4
},
"3072": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 16,
"num_warps": 8,
"num_stages": 4
},
"4096": {
"BLOCK_SIZE_M": 128,
"BLOCK_SIZE_N": 256,
"BLOCK_SIZE_K": 128,
"GROUP_SIZE_M": 16,
"num_warps": 8,
"num_stages": 4
}
}
Loading