forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Hexagon] Softmax slice op initial version (apache#11559)
Resolve merge conflict in utils.py
- Loading branch information
1 parent
eec521c
commit 48624db
Showing
4 changed files
with
248 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""Hexagon slice softmax compute and schedule""" | ||
|
||
import typing | ||
|
||
from tvm import te, tir, topi | ||
from ..utils import get_layout_transform_fn | ||
|
||
|
||
def softmax_compute(in_tensor): | ||
""" | ||
Compute for slice softmax op for hexagon. | ||
This op makes the following assumptions: | ||
1. This op is written for a sliced softmax operation. | ||
2. The input is assumed to be in NC layout. | ||
""" | ||
return topi.nn.softmax(in_tensor, axis=1) | ||
|
||
|
||
def softmax_stir_schedule( | ||
out: te.Tensor, inp: te.Tensor, out_layout: typing.Callable, in_layout: typing.Callable | ||
): | ||
""" | ||
STIR schedule definition for the compute of softmax | ||
""" | ||
|
||
in_layout = get_layout_transform_fn(in_layout) | ||
out_layout = get_layout_transform_fn(out_layout) | ||
|
||
func = te.create_prim_func([inp, out]) | ||
sch = tir.Schedule(func, debug_mask="all") | ||
|
||
max_tensor = sch.get_block("T_softmax_maxelem") | ||
exp_tensor = sch.get_block("T_softmax_exp") | ||
sum_tensor = sch.get_block("T_softmax_expsum") | ||
out_tensor = sch.get_block("T_softmax_norm") | ||
|
||
sch.transform_layout(max_tensor, inp.name, in_layout) | ||
sch.transform_layout(out_tensor, out.name, out_layout) | ||
|
||
_, c_inner = sch.get_loops(max_tensor) | ||
_, c_inner_i = sch.split(c_inner, [None, 64]) | ||
rf_max = sch.rfactor(c_inner_i, 0) | ||
_, _, max_inner = sch.get_loops(rf_max) | ||
sch.vectorize(max_inner) | ||
|
||
_, loopi = sch.get_loops(exp_tensor) | ||
_, loopi_i = sch.split(loopi, [None, 512]) | ||
sch.vectorize(loopi_i) | ||
|
||
_, c_sum_inner = sch.get_loops(sum_tensor) | ||
_, c_sum_inner_i = sch.split(c_sum_inner, [None, 64]) | ||
rf_sum = sch.rfactor(c_sum_inner_i, 0) | ||
_, _, sum_inner = sch.get_loops(rf_sum) | ||
sch.vectorize(sum_inner) | ||
|
||
_, c_out_inner = sch.get_loops(out_tensor) | ||
_, c_out_inner_i = sch.split(c_out_inner, [None, 512]) | ||
sch.vectorize(c_out_inner_i) | ||
|
||
return sch |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
140 changes: 140 additions & 0 deletions
140
tests/python/contrib/test_hexagon/test_softmax_slice.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
import pytest | ||
import numpy as np | ||
from tvm import te, topi | ||
|
||
import tvm.testing | ||
from tvm.topi import testing | ||
from tvm.contrib.hexagon.build import HexagonLauncher | ||
|
||
import tvm.topi.hexagon.slice_ops as sl | ||
from .infrastructure import allocate_hexagon_array | ||
|
||
|
||
def transform_numpy(arr_np, layout): | ||
|
||
if layout in ["nc-512c-2d"]: | ||
N, C = arr_np.shape | ||
return arr_np.reshape([N, C // 512, 512]) | ||
raise RuntimeError(f"Unexpected layout '{layout}'") | ||
|
||
|
||
@tvm.testing.fixture | ||
def input_np(input_shape, dtype): | ||
return (np.random.uniform(size=input_shape)).astype(dtype) | ||
|
||
|
||
@tvm.testing.fixture | ||
def transformed_expected_output_np(expected_output_np, output_layout): | ||
return transform_numpy(expected_output_np, output_layout) | ||
|
||
|
||
@tvm.testing.fixture | ||
def transformed_input_np(input_np, input_layout): | ||
return transform_numpy(input_np, input_layout) | ||
|
||
|
||
class Basesoftmax2d: | ||
|
||
input_shape, input_layout, output_layout, axis_sep = tvm.testing.parameters( | ||
((1, 1024), "nc-512c-2d", "nc-512c-2d", [2]) | ||
) | ||
dtype = tvm.testing.parameter("float32") | ||
working_scope = tvm.testing.parameter("global.vtcm") | ||
|
||
|
||
class TestSoftmax2d(Basesoftmax2d): | ||
@tvm.testing.fixture | ||
def expected_output_np(self, input_np): | ||
if len(input_np.shape) == 2: | ||
ref_np_2d = tvm.topi.testing.softmax_python(input_np) | ||
return ref_np_2d | ||
raise RuntimeError(f"Unexpected input shape '{input_np.shape}'") | ||
|
||
@tvm.testing.requires_hexagon | ||
def test_softmax_f32( | ||
self, | ||
dtype, | ||
input_layout, | ||
output_layout, | ||
input_shape, | ||
input_np, | ||
transformed_input_np, | ||
transformed_expected_output_np, | ||
expected_output_np, | ||
working_scope, | ||
axis_sep, | ||
hexagon_session, | ||
): | ||
|
||
target_hexagon = tvm.target.hexagon( | ||
"v69", | ||
llvm_options="--disable-loop-unrolling-pass", | ||
) | ||
A = te.placeholder(input_shape, name="A", dtype=dtype) | ||
|
||
O = sl.softmax_compute(A) | ||
|
||
if input_layout == "nc-512c-2d": | ||
tir_s = sl.softmax_stir_schedule(O, A, output_layout, input_layout) | ||
sch = tir_s.mod | ||
else: | ||
raise RuntimeError(f"Unexpected input layout '{input_layout}'") | ||
|
||
with tvm.transform.PassContext( | ||
opt_level=3, | ||
config={ | ||
"tir.LoopPartition": {"partition_const_loop": True}, | ||
}, | ||
): | ||
|
||
func = tvm.build( | ||
sch, | ||
[A, O], | ||
tvm.target.Target(target_hexagon, host=target_hexagon), | ||
name="softmax_slice", | ||
) | ||
|
||
input_arr = allocate_hexagon_array( | ||
hexagon_session.device, | ||
data=transformed_input_np, | ||
axis_separators=axis_sep, | ||
mem_scope=working_scope, | ||
) | ||
|
||
output_arr = allocate_hexagon_array( | ||
hexagon_session.device, | ||
tensor_shape=transformed_expected_output_np.shape, | ||
dtype=transformed_expected_output_np.dtype, | ||
axis_separators=axis_sep, | ||
mem_scope=working_scope, | ||
) | ||
|
||
mod = hexagon_session.load_module(func) | ||
mod(input_arr, output_arr) | ||
|
||
n, c = input_np.shape | ||
output_np = output_arr.numpy().reshape(1, c // 512, 512) | ||
|
||
np.testing.assert_allclose(output_np, transformed_expected_output_np, rtol=1e-4, atol=1e-4) | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
sys.exit(pytest.main(sys.argv)) |